CONNECTING THE DEFENCE COMMUNITY WITH INSIGHT, INTELLIGENCE & OPPORTUNITIES

Officially Supported By: Defence Contracts International Supply2Defence

Official Media Partners for:

Data-driven defence

September 12, 2018
Data-driven defence

Data is a critical asset for military organisations, but this data is only valuable if used effectively. With this in mind, Emma CyganDesign and Development Engineer at steering system supplier Pailton Engineering, addresses the need for data-driven design in military vehicle engineering. 

The military vehicle sector is rapidly adapting to changing security threats and new technologies. In fact, much of the UK Ministry of Defence (MOD) and the US Department of Defense (DoD) procurement activity now uses cloud services, software and technology products involved in the collection and processing of huge reams of data. However, the industry is still at the early stages of making full use of the wealth of information available to it.  

Designing with data means that military vehicles are able to take on the rough terrain and turbulent conditions of the real world — with maximum survivability. But, where does this data come from? 

Connected military vehicles are generating gigabytes of data from sensor-packed functions including on-board systems that monitor a vehicle’s oil, temperature and fuel consumption, as well as more general performance data, such as speed, distance travelled and location. This data can be used to track vehicles and personnel and, importantly, make intelligent decisions and inform the design of future vehicles.  

By using data generated from real-life vehicles, design engineers can make more informed decisions on how to best manufacture a military vehicle. Real-life vehicle data is used to design, manufacture and test military-grade steering systems against the specified load and frequency data of the real-life application. If the load data is unknown, theoretical calculations and simulation software can also outline loads.  

It is not necessarily the static values of the load or frequency data that is of most concern in the design process, considering that most military vehicles are designed to go above and beyond the actual loads and frequencies they will face. Rather, it’s the dynamic nature of the vehicle’s activity — the varying loads, the changeable frequencies and irregular abusive loads that occur during the vehicle’s life that should be a fundamental consideration.  

This use of real-life data takes this dynamism from the qualitative realm to the quantitative realm, so engineers can use this data when developing a vehicle’s design. 

Data-driven testing 

Data-driven design enables data-driven testing. One of the most important parameters to test for a military vehicle and its parts is the maximum load. With this information you can observe how much force a part can endure, in both tensile and compression, before a failure occurs. Using different rigs to test a range of force applications, forces up to ±400kN can be applied both statically or dynamically. 

Moreover, with enough data, you can compile a multitude of loads at their respective frequencies and cycles as part of a dynamic block testing program. This program effectively mirrors the real-life data that is gathered from the vehicle to accurately assess the true fatigue life of the part.  

With a variety of loads and frequencies in place, engineers can measure the number of cycles that the parts can endure over time, performing one million load cycles in only one week. That’s enough to replicate infinite life for a part on a vehicle, meaning lifecycle management decisions can be made in advance.   

As connected military vehicles are generating more data than ever before, it makes sense that these vehicles be produced with meaningful design data at conception, to maximise safety, performance and efficiency.

If you would like to join our community and read more articles like this then please click here 

DoD Emma Cygan MOD Pailton Engineering

Post written by: Promark Media Ltd

RELATED ARTICLES

DPRTE partner DIO awards £1.6bn contracts to upgrade UK Defence estate

October 17, 2024

Homeland - Defence contractors compliance with SSRO under scrutiny

The latest Compliance Bulletin evaluates how effectively defence contractors are adhering to the regulations for reporting on non-competitive, or single

Co-founders Shefali Sharma (L) and Eddie Jackson (R) in front of the servers being used for AVIS processing to support strategic government decision making.

September 24, 2024

Homeland - UK AI start-up secures first ever software Agreement Lite with MOD

AI & robotics start-up Oxford Dynamics has secured an Enterprise Agreement Lite with the UK Ministry of Defence worth up